Assigning a Confidence Threshold on Automatic Beat Annotation in Large Datasets

نویسندگان

  • José R. Zapata
  • Andre Holzapfel
  • Matthew E. P. Davies
  • João Lobato Oliveira
  • Fabien Gouyon
چکیده

In this paper we establish a threshold for perceptually acceptable beat tracking based on the mutual agreement of a committee of beat trackers. In the first step we use an existing annotated dataset to show that mutual agreement can be used to select one committee member as the most reliable beat tracker for a song. Then we conduct a listening test using a subset of the Million Song Dataset to establish a threshold which results in acceptable quality of the chosen beat output. For both datasets, we obtain a percentage of trackable music of about 73%, and we investigate which data tags are related to acceptable and problematic beat tracking. The results indicate that current datasets are biased towards genres which tend to be easy for beat tracking. The proposed methods provide a means to automatically obtain a confidence value for beat tracking in nonannotated data and to choose between a number of beat tracker outputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Scalable Image Annotation by Summarizing Training Samples into Labeled Prototypes

By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

A New Baseline for Image Annotation

Automatically assigning keywords to images is of great interest as it allows one to index, retrieve, and understand large collections of image data. Many techniques have been proposed for image annotation in the last decade that give reasonable performance on standard datasets. However, most of these works fail to compare their methods with simple baseline techniques to justify the need for com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012